2007
 TRIAL HIGHER SCHOOL CERTIFICATE EXAMINATION

Mathematics

General Instructions

- Reading Time -5 minutes
- Working Time -3 hours
- Write using black or blue pen
- Board approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total Marks - $\mathbf{1 2 0}$

- Attempt Questions 1-10
- All questions are of equal value

Total marks - 120
Attempt Questions 1 - 10
All questions are of equal value
Begin each question on a SEPARATE sheet of paper. Extra paper is available.
Marks
Question 1 (12 marks) Begin a SEPARATE sheet of paper
(a) Evaluate $\frac{e+1}{\pi}$ correct to three decimal places
(b) Find θ to the nearest degree if $\sin \theta=\frac{4 \sin 57^{\circ}}{6 \cdot 7}$
(c) What is the centre and radius of a circle with equation $(x+2)^{2}+(y-3)^{2}=2.25$
(d) The mean of $3,5,7, x$ is 6.75 . What is the value of x ?
(e) If $x=2.35$ evaluate the expression $|-3-4 x|$
(f) Factorise $3 x^{2}-5 x-2$
(g) Express $2 \cdot 12^{\mathrm{c}}$ as an angle in degrees correct to the nearest minute $\quad \mathbf{1}$

Question 2 (12 marks) Begin a SEPARATE sheet of paper
(a) Differentiate
(i) $\log _{e}\left(x^{2}-3 x\right) \quad 1$
(ii) $x^{\frac{1}{2}} 1$
(iii) $\frac{2 x-1}{\cos x} \quad 2$
(b) Integrate
(i) $\int \cos \left(\frac{x}{2}\right) d x$
(ii) $\int_{0}^{1} \frac{1}{6} e^{3 x} d x \quad$ leave your answer in exact from $\quad 3$
(c) Find y if $\frac{d y}{d x}=2 \cos 2 x$ and $y=3$ when $x=\frac{\pi}{4}$

Question 3 (12 marks) Begin a SEPARATE sheet of paper
(a) $\mathrm{A}(1,-1) \quad \mathrm{B}(-3,1) \mathrm{C}(-3,4)$ and $\mathrm{D}(3,1)$ are points on the Cartesian Plane. $\mathrm{AB} \| \mathrm{CD}$

(i) Find the distances AB and DC
(ii) Show that the equation of CD is $x+2 y-5=0$
(iii) Find the perpendicular distance of A from CD 2
(iv) Hence or otherwise obtain the area of the trapezium ABCD
(b) Find the equation of the tangent to the curve $y=\sin 3 x$ at the point where $x=\frac{\pi}{3}$
(c) The graphs of $y=2 x$ and $y=-x^{2}+x-2$ are shown. Solve $0>x^{2}+x+2$

Question 4 (12 marks) Begin a SEPARATE sheet of paper
(a) Let m and n be positive whole numbers with $m>n$
(i) Show that $m^{2}+n^{2}, m^{2}-n^{2}, 2 m n$ obey Pythagoras' Theorem
(ii) Which Pythagorean Triad is generated when $m=10$ and $n=3$?
(b) Consider the curve $y=x^{4}-\frac{4}{3} x^{3}-2 x^{2}+4 x+3$
(i) Obtain y^{\prime} and $y^{\prime \prime}$ for this function 2
(ii) Show that $x=-1$ and $x=1$ satisfy $y^{\prime}=0$ and find the y coordinates.
(iii) Find the x coordinates of the two points of inflexion.
(iv) Determine the nature of each of the stationary points.
(v) Sketch the curve for the domain $-2 \leq x \leq 2$

Question 5 (12 marks) Begin a SEPARATE sheet of paper
(a) Show that $\frac{\sec \theta-\sec \theta \cos ^{4} \theta}{1+\cos ^{2} \theta}=\sin \theta \tan \theta$
(b) (i) Find the value(s) of k for which $x^{2}+(2-k) x+2.25=0$ has equal roots
(ii) Find the value(s) of k for which $y=k x+1$ is tangent to $y=x^{2}+2 x+3 \cdot 25$
(c) A 15 cm arc on the circumference subtends an angle of $\frac{\pi^{c}}{5}$ at the centre of a circle. 3 Find the radius of the circle and the area of the sector.
(d) Boat A sails 15 km from port P on a bearing of 055°

Boat B sails from P for 25 km on a bearing of 135°

- ${ }_{A}$
(i) Show the angle $\mathrm{APB}=80^{\circ} \quad{ }^{\circ} \mathrm{P} \quad 1$
(ii) Calculate their distance apart to 1 dec pl . 2

Question 6 (12 marks) Begin a SEPARATE sheet of paper
(a) $\log _{m} p=1.75$ and $\log _{m} q=2.25$. Find
(i) $\log _{m} p q \quad 1$
(ii) $\log _{m} \frac{q}{p} \quad 1$
(iii) $\sqrt[5]{p q^{2}}$ in terms of $m \quad 2$
(b) In the diagram;
the circle k has centre B and radius BC . the circle l has centre C and radius CA. the circle m has centre A and radius AC .
(i) Prove $\triangle B A D \equiv \triangle B C D$
(ii) Prove BD bisects $A \hat{B} C$

(c) Twinkle Finance offers its investors the opportunity to have interest credited to their investment "as often as you wish". Naturally many investors punt for the "EVERY MINUTE" plan. Twinkle offer 12% pa.
(i) Stella invests $\$ 1000$ for a year with Twinkle on the "EVERY MINUTE" plan. 2 Theoretically, Twinkle's computers multiply Stella's balance By approximately 1.000000228 every minute. Show why this is so.
(ii) How much is Stella's investment worth after 1 year? 1

Question 7 (12 marks) Begin a SEPARATE sheet of paper
(a) Let A be the point $(-2,0)$ and B be the point $(6,0)$.

At $\mathrm{P}(x, y), \mathrm{PA}$ meets PB at right angles.
(i) Show that the gradient of PA is $m_{1}=\frac{y}{x+2} \quad 1$
(ii) Find an equation for the locus of P
(b) The velocity of an object is given by the equation $v=6 t-8-t^{2}$ Where time (t) is in seconds and velocity (v) in metres/second It begins its motion at $x=5$ metres.
(i) Find an equation for the displacement of the object 2
(ii) At what 2 times is the object stationary? 1
(iii) Find the distance travelled by the object between $t=3$ and $t=5 \quad 2$
(iv) What is the maximum velocity of the object? 1
(c) Two dice are biased so that, the probability of a six is $\frac{3}{8}$ and of each other number is $\frac{1}{8}$. Find the probability of
(i) Rolling a double six $\quad 1$
(ii) Rolling the two dice so that neither is a six 1
(iii) Only 1 six appears when the two dice are rolled 1

Question 8 (12 marks) Begin a SEPARATE sheet of paper
(a) The graph of $y=f^{\prime}(x)$ is shown. The roots of $f^{\prime}(x)$ are $x=-2,0.5$, and 3

C has x coordinate -0.95 and B has x coordinate 1.95

$\begin{array}{ll}\text { (i) For what values of } x \text { is } f(x) & \mathbf{1} \\ \text { increasing? } \\ \text { (ii) C is a local maximum on } f^{\prime}(x) . & \mathbf{2}\end{array}$ What type of point occurs on $f(x)$ at the same x value as that shown at C.

Justify your answer.
(iii) For what values of x is $f(x)$ concave down?
(b) The curve $y=\log _{e} x$ between $x=e$ and $x=3 e$ is rotated around the x axis.
(i) Write the integral which gives the value of this volume.
(ii) Complete the table for this function write your answer to 2 decimal places

x	e	$2 e$	$3 e$
$\pi \times(f(x))^{2}$			

(iii) Use Simpson's Rule with 3 function values to approximate the volume.
(c) What is the domain and range for $y=\sqrt{9-x^{2}}$

Question 9 (12 marks) Begin a SEPARATE sheet of paper
(a) Re-write $2 y=x^{2}-6 x+8$ in the form $(x-h)^{2}=4 A(y-k)$

Hence state the focus and vertex for the parabola
(b) The percentage concentration (A) of Carbon ${ }_{14}$ falls exponentially after the death of the living organism it is a part of. After 1845 years only 80% of the original concentration of Carbon ${ }_{14}$ remains.
(i) Using the model $A=100 e^{-k t}$, find the value of k
(ii) Another organic artefact contains only 65% of the original concentration of Carbon ${ }_{14}$. How long has this organism been dead?
(iii) A sea sponge has been dead for 12000 years. What percentage of the original Carbon ${ }_{14}$ concentration does it have?
(c) On the same diagram sketch the graphs of $y=\sin x$ and $y=2 \sin x+1$ $0 \leq x \leq 2 \pi$
(a) Two sailors are paid to bring a motor launch back to Sydney from Gilligans Island, a distance of 1200 km . They are each paid $\$ 25$ per hour for the time spent at sea. The launch uses fuel at a rate $R=20+\frac{\nu^{2}}{10}$ litres per hour. Diesel costs $\$ 1.25$ per L and (v) is the velocity in $\mathrm{km} /$ hour.
(i) Show that, to bring the launch back from Gilligans Island, the total cost to the owners is $\frac{90000}{v}+150 v$.
(ii) Find the speed which minimises the cost and determine this cost.
(b) The sum of a geometric series is represented $\Sigma=a+a r+a r^{2}+a r^{3}+\ldots+a r^{n-1}$

Form an expression for $r \Sigma$ to show that $\Sigma=\frac{a\left(r^{n}-1\right)}{r-1}$
(c) (i) Paula is in a superannuation fund to which she contributes $\$ 250.00$ at the beginning of each month for 30 years. The fund pays $6.6 \% \mathrm{pa}$ compounded monthly. If the fund matures at the end of the last month of the $30^{\text {th }}$ year, find the total value of the fund at maturity.
(ii) After receiving the payout from the fund, Paula sells her Audi for $\$ 30000$ and invests the total of the two assets in an account that earns interest at 6.6% p.a. compounded monthly. How much will the investment be worth after a further 10 years?

End of Examination

STANDARD INTEGRALS

$$
\begin{aligned}
& \int x^{n} d x \quad=\frac{1}{n+1} x^{n+1}, n \neq-1 ; x \neq 0, \text { if } n<0 \\
& \int \frac{1}{x} d x \quad=\ln x, x>0 \\
& \int e^{a x} d x \quad=\frac{1}{a} e^{a x}, \quad a \neq 0 \\
& \int \cos a x d x \quad=\frac{1}{a} \sin a x, \quad a \neq 0 \\
& \int \sin a x d x \quad=-\frac{1}{a} \cos a x, a \neq 0 \\
& \int \sec ^{2} a x d x \quad=\frac{1}{a} \tan a x, a \neq 0 \\
& \int \sec a x \tan a x d x=\frac{1}{a} \sec a x, \quad a \neq 0 \\
& \int \frac{1}{a^{2}+x^{2}} d x \quad=\frac{1}{a} \tan ^{-1} \frac{x}{a}, a \neq 0 \\
& \int \frac{1}{\sqrt{a^{2}-x^{2}}} d x \quad=\sin ^{-1} \frac{x}{a}, \quad a>0,-a<x<a \\
& \int \frac{1}{\sqrt{x^{2}-a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}-a^{2}}\right), x>a>0 \\
& \int \frac{1}{\sqrt{x^{2}+a^{2}}} d x \quad=\ln \left(x+\sqrt{x^{2}+a^{2}}\right) \\
& \text { NOTE : } \ln x=\log _{e} x, \quad x>0
\end{aligned}
$$

